Bearbeitete Teile in 3 Tagen versenden, bestellen Sie noch heute Ihre Metall- und Kunststoffteile.WhatsAPP:+86 189 2585 8912Doris.wu@js-rapid.com

Zukunft der Fertigung: Entdecken Sie die 5 fortschrittlichsten 3D -Drucktechnologien weltweit

blog avatar

Geschrieben von

JS

Veröffentlicht
Apr 24 2025
  • 3D-Druck

Folgen Sie uns

what-are-the-types-of-3d-printing

3D-Drucktechnologie verändert die Produktionslogik mit digitaler Fertigung. von Racid-Prototypen von Racing-Tasten und kundenspezifischen Skabeln für die medizinischen Anwendungen für die ärztlichen Anwendungen für medizinische Anwendung. Herstellung. als Verbindung zwischen Design und Produktion, 3D-gedruckte. FDM-, SLA-, SLS- und Metalldruckprozesse , unterstützt alles von der Prototypentwicklung bis zur kleinen Batch-Produktion und hilft Innovationen.


<h2 class= Was sind die Arten von 3D-Drucktechnologien?

1. Fusion Abscheidung (FDM)

  • Prinzip: geschmolzenes Ablagerungsformular durch Erhitzen von Kunststofffaserschicht für Schicht Extrusion.
  • Merkmale: Niedrige Kosten, Geeignet für schnelle Prototypen Der effiziente Produktionsprozess kann den Spannung optimieren.

2.SereOthographie (SLA)

  • Prinzip: UV-Curing-Technologie, flüssiges Harz wird durch UV-Härtung gebildet.
  • Merkmale: Hohe Genauigkeit (± 0,05 mm), glatte Oberfläche, geeignet für komplexe Strukturen, erfüllen Sie die Anforderungen an die Precision Manufacturing JS.

3. Data-Len = "32" Daten-V-7B79C893 = ""> Selektives Lasersintering (SLS)

  • Wie es funktioniert: Laser gesintertes Nylonpulver erfordert keine Stützstruktur.
  • Merkmale: hohe Festigkeit, für Funktionsteile geeignet, JS 'Metall/Verbundmaterialkompatibilität kann seinen Anwendungsbereich erweitern.

4. Data-translateid = "674F16ec91bb64dddd43699554f95f99f4" data-pos = "2" data-len = "23" Data-V-7B79C893 = ""> Wie es funktioniert: Inkjet-Pulverbettfusion, Verfestigung der Nylonpulverschicht für Schicht durch Schmelzen und Infraroterwärmung.

  • Merkmale: hohe Geschwindigkeit (3-mal schneller als SLS), hohe Details (± 0,08 mm),

    5. data-pos = "2" data-len = "30" data-V-7b79c893 = ""> Selektives Laserschmelzen (SLM)

    • Wie es funktioniert: Metallpulverlaserschmelz für High-End-Herstellung.
    • Merkmale: Hohe Genauigkeit (± 0,02 mm), Hochtemperaturwiderstand und JS-Genauigkeitsbearbeitungstechnologie können die Produktqualität weiter verbessern.

    Comparison of 3D Printing Technologien

    Techniktyp Geschwindigkeit Kosten Materialtyp Komplexitätsverarbeitungsfähigkeit JS-Unternehmensgeschäftsvorteile
    FDM Medium Low Kunststoffe wie PLA und ABS. ★★★ ☆ Effiziente Produktionsprozessoptimierungsgeschwindigkeit.
    SLA Fast (DLP) Zentrum Photosensitive Harz. ★★★★ ☆ Hochgenauige passende JS ± 0,005 mm Standard.
    SLS Medium Zentrum Nylon, TPU und andere Pulver. ★★★★ ☆ Unterstützung der Ausdehnung von Metall/Verbundanwendungen.
    MJF extrem schnell mittelhoch Nylon (PA12/PA11). ★★★★★ Batch-Produktionseffizienz Verbesserung für schnelle Lieferung.
    SLM Slow groß Metallpulver (Titan, Edelstahl). ★★★★★ Präzisionsbearbeitungstechnologie sorgt für eine hohe Komplexität von Teilen.

    Wie wirkt sich die Dicke der FDM-Druckschicht auf die Festigkeit aus?

    1. Je dicker die Schicht, desto schwächer ist der Zwischenschicht-Adhäsion

    3. Data-V-7B79C893 = ""> Schichtdicke (Z-Achse-Auflösung)

    4. data-translateid="b8549a9fef256b791f3800346088bed7" data-pos="3" data-len="16" data-v-7b79c893="">Resin properties

    • Viskosität: Harze mit niedriger Viskosität haben eine gute Fließfähigkeit, leicht zu füllen, aber die Härtungsgeschwindigkeit muss ausgeglichen werden.
    • Photoemsitivität: Hochfotosensitivitätsharze reagieren für Licht und können bei geringer Energie verfestigen, was das Risiko einer thermischen Verformung verringert.

    5. Data-V-7B79C893 = ""> Modellgeometriekomplexität

    • Überhängende Strukturen und Löcher erfordern zusätzliche Unterstützung oder Schichtstrategieanpassungen, die auf Kosten der lokalen Auflösung liegen können.
    • Optimierungsmethode: Die adaptive Unterstützungsstruktur wird durch Modellschneidungssoftware erzeugt.

    Parametervergleichs- und Optimierungsvorschlag Tabelle

    Parameter Einfluss auf die Auflösung Optimierungsrichtung Typischer Wert
    Lichtquellentyp Laser> DLP (Laser hat eine höhere Genauigkeit bei derselben Auflösung). Wählen Sie Laser für Präzisionsmodelle und DLP für die Massenproduktion. Laser: 50 μm / DLP: 100 μm < / td>
    Spotgröße Je kleiner die Stelle, desto klarer die Details. Verwenden Sie Laserköpfe mit hoher Präzision oder 4K-DLP-Projektion. 50 μm (Laser)
    Scan-Geschwindigkeit Je langsamer die Geschwindigkeit, desto vollständiger die Aushärtung. Reduzieren Sie die Geschwindigkeit in feinen Bereichen (z. B. 0,1 mm/s) und beschleunigen Sie in großen Bereichen. 50-200 mm/s
    Schichtdicke Die Schichtdicke ist halbiert und die Z-Achse-Auflösung wird um das 4-fache erhöht. Verwenden Sie dünne Schichten (25 μm) für Präzisionsteile und dicke Schichten (100 μm) für die Geschwindigkeitssteigerung. 50 μm (Standard)
    Harzviskosität Niedrige Viskosität verbessert die Fluiditäts- und Detailfüllfähigkeit. Use special resins (e.g. transparent resins with viscosity ≤1500cP). 500-2000cP
    Model overhang angle If the angle is too small, dense support is required, and blocking the light affects the curing. Avoid <45° overhangs or add auxiliary supports in the design. ≥60° (unsupported)

    By properly selecting parameter combinations, the 3D printing model can achieve precise manufacturing from concept verification to functional prototypes.

    Which printing technology is more stable in high temperature environments?

    1.3D printing of metallic materials (high temperature environment preferred)

    SLM/DMLS (selective laser melting/sintering)

    • Heat resistance: Materials such as titanium alloy (Ti6Al4V, melting point 1668°C) and nickel-based superalloys (Inconel 718, melting point 1390°C) can withstand high temperatures for longer than 600° C.
    • Stability: The laser melts the metal powder layer by layer, the tissue is compact, and the resistance to creep is strong.
    • 3D printing service support: Printing shops reduce residual stress and prevent thermal deformation by optimizing laser power, scanning speed and cooling strategies.

    2.Ceramic 3D printing technology (ultra-high temperature resistance potential)

    SLA/DLP (light-curing ceramics)

    • Heat resistance: Alumina (Al2O3, melting point 2050°C) and zirconium oxide (ZrO2, melting point 2700°C) ceramics can withstand temperatures above 1500°C.
    • Stability: Ceramic blanks require high temperature sintering (above 1600°C), density is close to theoretical values, and thermal expansion coefficient low.
    • 3D Printing Service Support: Printers provide a complete range of services from printing to degreasing and sintering to ensure that ceramic parts are fissure-free and size stable.

    3.High-Performance engineering plastic 3D Printing

    FDM (Molten deposition modeling)

    • Heat resistant materials: PEEK (melting point 343°C), ULTEM (melting point 335°C) and other special engineering plastics.
    • Stability: PEEK retains strength after prolonged use at 260°C, but printing temperature (280-320°C) and cooling conditions need to be optimized.
    • 3D printing service support: Printing shops use industrial-grade FDM equipment (such as Stratasys Fortus series) with thermostats to reduce warping.

    SLS (selective laser sintering)

    • Heat resistance: Nylon + fiberglass/carbon fiber composites with a short-term temperature resistance of up to 180°C.
    • Stability: Laser sintering is compact, but oxidizes easily at high temperature for a long time and requires surface coating protection.
    • 3D printing service support: Printing shops provide material modification services (such as adding flame retardants) to improve temperature resistance.
    • Advantages: Plastic 3D printing is low cost, short cycle time, suitable for medium and high temperature environments (e.g. automobile intake manifolds, electronic radiator, etc.).

    Technology selection recommendations for high temperature scenarios​​

    Scene temperature Recommended Technology Core advantages Key capabilities of printing shops
    600-1000℃ Metal SLM/DMLS. High strength and creep resistance. Laser equipment, vacuum environment, heat treatment.
    1000-1500℃ Ceramic SLA/DLP. Ultra high temperature resistance and corrosion resistance. Specialized ceramic materials and high-temperature sintering process.
    200-600℃ PEEK FDM, Nylon SLS. Economy and lightweight. Industrial grade equipment and material modification.

    Printing Technology in High Temperature Environments

    How to achieve layered stacking in 3D ink jet printing?

    Ink jet printing technology is by layering liquid material on top of each other to create three-dimensional objects. Its core lies in high high-precision jetting and curing Kontrolle. Specific implementation steps and key technologies are as Folgt:

    1.Preparation of materials: Adaptation of liquid media

    • Photosensitive resin: The most commonly used material that requires fast curing and high viscosity stability.
    • Support material: Water-soluble or fusible material used to temporarily support complex structures.
    • Ink jet printing optimization: The injection accuracy of the nozzle (usually 20-100 microns in diameter, for example) needs to be adjusted by adjusting parameters such as viscosity of the material and surface tension.

    2.Ink jet print head: Precision droplet injection

    Piezoelectric drive or thermal foaming technology:

    • Piezoelectric ceramics: The piezoelectric ceramic deformed by voltage changes, and ink cavity are compressed to produce tiny droplets.
    • Thermal foaming: Local heating of ink to form bubbles, promote droplet spray.
    • Multi-nozzle collaboration: Industrial-grade inkjet print heads integrate hundreds of nozzles to achieve a single sweep over a large area.
    • Layered path planning: Software slices 3D models into 2D segments, and the inkjet head spray layers of material along the path.

    3.Layer by layer stacking: droplet solidification molding

    • Photocuring (UV/LED):
      • After each layer of liquid resin is sprayed, solidify with UV light or LED light immediately to form a solid thin layer.
      • Accurate control: Light intensity and exposure time need to be matched to the solidification characteristics of the material (e.g. SLA/DLP technology).

    4.Post-treatment: enhancement and surface optimization

    • Support structure removal: Dissolve or melt temporary support material.
    • Surface treatment: Grinding, sanding or chemical polishing to eliminate step effect.
    • Late-stage maintenance: Some materials require secondary curing to improve mechanical performance.

    Ink jet printing achieves layered stacking

    How to choose supporting materials for complex 3D printing models?

    1.Structural adaptation principle​

    Overhang structure (>45°):

    • PVA/HIPS: Soluble scaffold for water solubility or solvent removal.
    • Example: In 3D models printing of inclined bridges, PVA support can be removed by water solubility to prevent tool damage to detail.

    Bridge structure (long span):

    • ABS/nylon support rods: High temperature resistant to breakage during printing (such as robotic arm model).
    • For example, HIPS support can withstand high temperatures when printing grids in 3D models printing to prevent breakage during printing.

    2.Matching and separation of materials

    Easy peel combination:

    • PLA+PVA: Low adhesion, smooth finish.
    • Example: The 3D models printing transparent resin model matched the PVA support and dissolved in water without residue.

    Chemical dissolution combination:

    ABS+HIPS: Lemonin is needed to dissolve the scaffold and is suitable for complex internal parts such as gear components.

    3.Actual performance requirements

    • Heat Scenario: Ceramic/metal supports: high temperature resistant (e.g. titanium alloy printing) requiring mechanical peeling.
    • Shrinkage control: The material shrinkage rate of the supporting material is closer to that of the model material (e.g. PETG + PETG support).

    4.Post-treatment efficiency

    Quick removal:

    Environmental Protection Plan: It is advisable to select biodegradable scaffolds (e.g. PBDE-based biodegradable materials) to reduce waste liquid treatment costs.

    5.Printer adaptation

    FDM equipment:

    • Co-Supported: PLA/PVA/HIPS, optimize separation effect, optimized separation by adjusting nozzle temperature.
    • Example: 3D models printing hollow spheres with HIPS support, acetone vapor smooth surface.

    SLA/DLP equipment:

    • Supported by soluble resin, it was cured by ultraviolet light and then soaked and removed directly.
    • For example, when 3D models printing precision gears, resin supports retain microscopic detail.

    Can JS achieve functionally graded components through multi material 3D printing?

    1.Multi-material printing technology support

    JS's 3D printing services include MJF and composite metal/ceramic printing technologies, which can switch different materials (e.g. metal-ceramic, carbide-polymer) during the same printing process to achieve continuous or segmented gradient changes in material composition.

    2.Material compatibility and gradient design

    Through JS's 3D printing services, customers can choose from a variety of material combinations, including metals, ceramics and composites, and freely design the microstructure of functional gradient components (such as abrasionresistant + substrate layer).

    3.Process optimization and performance assurance

    JS's industrial-grade equipment supports thickness control (±0.005mm) and temperature management to ensure uniform interface bonding strength and gradient transition across different materials and meet extreme working conditions such as high temperature and pressure.

    4.Customized solutions

    For areas such as aerospace and medical devices, JS's team can provide a full range of services, from material selection and gradient structure design to reprocessing, such as:

    • Aerospace engine parts: Titanium alloy substrate gradient structure + ceramic thermal barrier coating.
    • Orthopedic implants: Metal skeleton biomimetic design + bioactive ceramic coating.

    Summary

    As a disruptive technology, 3dprinting continues to drive change in manufacturing with its diverse process types (e.g. FDM, SLA, metal printing, etc.) and a wide range of application scenarios (from industrial manufacturing to medical innovation). Whether it is the efficient production of complex functionally gradient parts or the rapid iteration of custom models, 3D printing services demonstrate irreplaceable flexibility and economy. Technology service providers represented by JS have further lowered the technology threshold by integrating multi-material printing, precision process control and industry-wide chain support, allowing businesses to focus on design innovation and value creation.

    Haftungsausschluss

    The content on this page is for general reference only. JS Series makes no express or implied warranties regarding the accuracy, timeliness, or applicability of the information provided. Users should not assume that the product specifications, technical parameters, performance indicators, or quality commitments of third-party suppliers are completely consistent with the content displayed on this platform. The specific design feature, material standards, and process requirements of the product should be based on the actual order agreement. It is recommended that the purchaser proactively request a formal quotation and verify product details before the transaction. For further confirmation, please contact our customer service team for professional support.

    JS-Team

    JS is an industry leading provider of customized manufacturing services, dedicated to providing customers with high-precision and high-efficiency one-stop manufacturing solutions. With over 20 years of industry experience, we have successfully provided professional CNC machining, sheet metal manufacturing, 3D printing, injection molding, metal stamping and other services to more than 5000 enterprises, covering multiple fields such as aerospace, medical, automotive, electronics, etc.

    We have a modern factory certified with ISO 9001:2015, equipped with over 100 advanced five axis machining centers to ensure that every product meets the highest quality standards. Our service network covers over 150 countries worldwide, providing 24-hour rapid response for both small-scale trial production and large-scale production, ensuring efficient progress of your project.

    Choosing JS Team means choosing manufacturing partners with excellent quality, precise delivery, and trustworthiness.
    For more information, please visit the official website: jsrpm.com

    FAQs

    1.Does SLS printing require support?

    SLS printing usually does not require support. The unsintered nylon powder will naturally envelop the model to avoid collapsing in the air. Only a few complex designs require a small amount of ancillary support, which greatly simplifies the reprocessing process.

    2.Which technology is suitable for printing transparent parts?

    SLA technology is suitable for printing transparent parts. It uses photosensitive resin that hardens under UV Licht. The surface is smooth and transparent. Suitable for making high precision transparent model (such as optical parts).

    3.What does the layer thickness of FDM affect?

    The thickness of FDM layer influences surface smoothness, printing time and printing strength. The thicker the layer, the more visible the pattern, the faster the printing, but the intensity may be reduced.

    4.How big a part can 3D printing make?

    Industrial-grade 3D-printing devices can manufacture large parts of meters (such as aerospace parts), while desktop devices are usually limited to a few dozen centimeters and are suitable for small models or prototypes.

    Resources

    3D printing filament

    Stereolithography

    Selective laser sintering

  • blog avatar

    JS

    Rapid Prototyping & Rapid Fertigungxperte

    Spezialisiert auf CNC -Bearbeitung, 3D -Druck, Urethanguss, Schnellwerkzeug, Injektionsform, Metallguss, Blech und Extrusion.

    Etikett:

    • 3D-Druck
    Teilen

    Criticism

    0 comments
      Click to expand more

      Featured Blogs

      empty image
      No data
      longsheng customer
      Kontakt